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We demonstrate, theoretically and experimentally, self-trapping of optical beams in nanoparticle

suspensions by virtue of thermophoresis. We use light to control the local concentration of nanoparticles,

and increase their density at the center of the optical beam, thereby increasing the effective refractive

index in the beam vicinity, causing the beam to self-trap.
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Self-channeling of optical beams in fluidic suspen-
sions—liquids containing small particles—has been
studied since 1982 [1,2], when it was demonstrated that
the optical gradient force can give rise to self-trapped
beams. For almost three decades, theoretical papers study-
ing the general concept of self-channeling in fluids have
been numerous [2], but experiments have been scarce
[1]. The effects leading to self-channeling of light in fluid
suspensions can be classified in two general classes: effects
relying on light scattering, i.e., the optical gradient force
[1], and thermal effects relying on (weak) absorption,
either in the fluid or in the particles [3]. When the particles
are much smaller than the optical wavelength, the gradient
force is very weak; hence, one would need a high density to
cause a significant change in the refractive index to trap
narrow beams. However, at higher particle densities, mul-
tiple scattering becomes dominant, randomizing the direc-
tion of scattered light. This works against the tendency of
the gradient force to push the particles (with refractive
index higher than of the liquid) towards the beam center.
In addition, particle-particle interactions further limit this
optically induced concentration process [4]. Consequently,
it is difficult to self-trap very narrow beams through the
gradient force because this requires high particle densities,
which in turn involves multiple scattering, which acts as
effective loss. Thermal effects, on the other hand, can lead
to a significant refractive index change, but in pure liquids
the refractive index typically decreases with increasing
temperature, which can support dark solitons [3] but not
self-trapping of (bright) beams. Hence, an additional
mechanism is required for self-trapping of optical beams
in thermal fluids.

Here, we demonstrate, theoretically and experimentally,
self-trapping of optical beams in nanoparticle suspensions
by virtue of thermophoresis. Our experiments manifest a
new kind of interplay between light, nanoparticles, and
liquids. This ability to use light to control the local concen-
tration of nanoparticles in a liquid has major implications for
a variety of applications, such as using light to locally
control chemical reactions, diffusion, osmosis, catalysis, etc.

Thermophoresis, a thermal mechanism often observed
in colloidal suspensions, manifests a strong reaction of

the suspended particles to temperature gradients.
Thermophoresis, or the Sôret effect, describes the ability
of a macromolecule or particles to drift along a temperature
gradient [5,6]. In a thermal gradient, a colloidal particle
attains a drift velocity vT ¼ �DTrT, where DT is the
thermophoretic mobility. The direction of the thermal drift
is determined by the sign of DT , making the particles
concentrate in hotter regions or in colder regions of the fluid
(positive or negative thermophoresis, respectively). At tem-
poral steady state, thermophoretic transport is balanced by
Brownian diffusion, as the Sôret coefficient, ST ¼ DT=D,
constituting the ratio between DT and the Brownian diffu-
sion coefficient. In the absence of thermal convection, Sôret
coupling of heat and mass transfer leads to a steady-state
concentration depending solely on the temperature distri-
butionwithin the fluid.Considerable effort has beenmade in
recent years to understand the fundamentals of thermopho-
retic motion [5,6]. For negative thermophoresis, the parti-
cles are thermophillic, moving from colder regions to hotter
ones. Negative thermophoresis typically occurs for a polar
solvent, where charges at the surface of the particles give
rise to ordering of themolecules around themor to changing
of the hydration entropies at the particle-solution interface
[5]. Qualitative temperature dependence of ST suggests that
the thermodiffusion of charged particles in aqueous solu-
tions is highly dependent on the response of water mole-
cules to the high electric field of the double layer [6].
Namely, negative thermophoresis appears when the particle
size decreases to nanometric scales, and it depends on the
solvent properties (temperature, pH, concentration of par-
ticles, etc.). Many nanoparticle suspensions and macromo-
lecules exhibit a negative Sôret coefficient: nanometric
polystyrene spheres, silica nanospheres, organic macromo-
lecules, proteins, various DNA or RNA strains, and more.
When the refractive indices of the particles and the

liquid are different, thermophoresis can be utilized to
change the local optical properties of a solution by redis-
tributing the particles suspended in it. We show that a beam
propagating in such a fluid can give rise to a refractive
index profile that guides the beam, thereby generating a
‘‘hot-particle soliton’’ [7]. To do this, one should use a
proper combination of particles and liquid with a negative
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Sôret coefficient. The beam should be slightly absorbed in
the fluid and act as a heat source. The negative thermopho-
resis gives rise to particles concentrating at the region
where the temperature is elevated, i.e., the center of the
beam. If the particles have a refractive index higher than
that of the liquid (nparticle > nsolution), under negative ther-

mophoresis they increase the refractive index at the beam
center, thereby creating a waveguide [8]. When the struc-
ture of the beam inducing this waveguide coincides with
the wave function of the guided mode within the wave-
guide, the beam self-traps, forming a spatial soliton. Such a
thermophoresis-based soliton has never been suggested or
observed. This ability to redistribute nanoparticles with
light at the precision of tens of micrometers is attractive
for many applications, especially because producing a
meaningful gradient force on nanometric particles requires
very high optical intensities [1]. This mechanism can serve
as a means to concentrate nanoparticles with light and
arrange them at prescribed structures within the liquid.
Such nonlinear optofluidic interaction could be utilized to
control chemical and biological reactions, to separate be-
tween particles of different sizes or compositions, to ar-
range molecules, etc.

Wemodel this system in temporal steady state, where the
temperature distribution T in the fluid is described by the
heat equation with a ‘‘source’’ term: the optical intensity I
absorbed within the fluid with an absorption coefficient �,

� kthr2
?T ¼ �Ið1Þ; (1)

where kth is the heat conductance in the fluid. If the ab-
sorption is due to the liquid only, the coefficient is multi-
plied by (1� Vf), where Vf is the local volume fraction of

the particles. Strictly speaking, when the absorption is also
included in the optical wave equation, there are no soli-
tons—because a source that decays with propagation in-
evitably leads to nonstationary solutions. However, in our
experiments, absorption is so small that the light is practi-
cally nondepleted for propagation distances L of tens of
cm. Hence we neglect absorption in the wave equation.

In order to model the temperature dependence of the
local volume fraction of the particles, we use the empirical
expression for the single-particle Sôret coefficient [5],

STðTÞ ¼ ST;1
�
1� exp

�
T� � T

T0

��
; (2)

where ST;1 is the high temperature limit, T� the tempera-

ture at which the sign of ST changes, and T0 represents the
strength of the temperature effect. Here, ST < 0 for T <
T�. The function rises relatively fast and appears to reach a
constant value at high temperature. Utilizing ST , we can
calculate the distribution of the particles in the solution, in
temporal steady state, to be

~r?C ¼ �CST
~r?T; (3)

where C describes the nanoparticle concentration. For the
simplest soliton, we seek propagation-invariant solutions;

i.e., Eq. (3) contains derivatives in x; y only. For small
volume fractions of particles (Vf < 3%), the Sôret coeffi-

cient is independent of the concentration [6]; hence, Eq. (3)
leads to the following relation for local volume fraction,

Vfð ~rÞ ¼ Vf;0 exp

�
�

Z Tð ~rÞ

T0

STdT

�
; (4)

where Vf;0 is such that it keeps the average volume fraction

constant (total amount of nanoparticle does not change).
From Eq. (4) we see that for ST < 0 the local Vf increases

in areas where the temperature is higher, thereby raising
the refractive index in that region (recall nparticle >

nsolution). The refractive index for a nanoparticle suspension
with Vf � 1 can be approximated as n0 ffi nparticleVfþ
nsolutionð1� VfÞ. In our experiments, we can neglect the

thermal dependence of nparticle; hence, the local change in

the refractive index can be approximated by

@n

@T
¼ ðnparticle � nsolutionÞ

@Vf

@T
þ

�
@nsolution

@T

�
ð1�VfÞ: (5)

For most fluids @nsolution=@T < 0; therefore, in pure liquids
raising the temperature will cause the refractive index to
decrease and a thermal defocusing effect will occur. For a
colloidal dispersion with nparticle > nsolution and @Vf=@T >

0, the overall thermal change in the refractive index can be
made positive, thereby creating a focusing effect for the
beam whose absorption is what induces the process. For
this to occur, the particles must be thermophilic. The
spatial distribution of the refractive index change is com-
puted by calculating the index as a function of local
temperature T and particle concentration C, and subtract-
ing the initial index no,

�n ¼ nðT; VfðTÞÞ� n0ðT0; Vf;0Þ; (6)

Equations (1)–(5) are supplemented by the nonlinear para-
xial wave equation for a monochromatic field
Eoptðx; y; z; tÞ ¼ Aðx; y; zÞ exp½iðkz�!tÞ� of a slowly

varying envelope Aðx; y; zÞ [9],

i
@A

@z
þ 1

2k
r2

?Aþ k�n

n0
A ¼ 0; (7)

where z is propagation direction, k ¼ 2�n0=�0 is the wave
number in the medium (�0 is the vacuum wavelength). The
intensity profile is I ¼ jAj2.
The simplest solitons correspond to solutions with z

invariant T, C, �n, with Aðx; y; zÞ ¼ Uðx; yÞ exp½�i�z�.
We solve the equations in a self-consistent manner: we
place an initial guess for I in Eq. (1), from which we find
the temperature profile Tðx; yÞ, which we substitute in
Eq. (2) and find STðx; yÞ. With STðx; yÞ we use Eq. (4) to
find the local volume fraction of particles, which we use in
Eq. (6) to find �n. Substituting �n in Eq. (7), we calculate
themodifiedA caused by the new refractive index.We place
this I ¼ jAj2 back in Eq. (1) to calculate Tðx; yÞ again, and
from it the rest of the variables. We iterate until the profiles
converge. These propagation-invariant solutions yield the
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properties of the soliton for a given parameter set (average
volume fraction, total beam power, etc.).

In finding solitons, we use the experimental parameters
of our system, along with some values from handbooks.
We use aqueous dispersion of thermophilic 20 nm diameter
polystyrene (PS) particles (water suspension of PS nano-
sphere standard by Duke Thermo Scientific), whose ST was
studied extensively [5], from which the values of ST;1, T�,
and T0 were taken. In our suspension, ST < 0 for T <
45 �C; hence, room temperature is adequate for thermo-
phillic transport. Our initial average volume fraction is
Vf;0 ¼ 1%. We use a fluid cell with a square cross section

of 1 mm2. The wavelength of the beam is � ¼ 808 nm, at
which the refractive index of the nanoparticles is higher
than that of water (naq ¼ 1:29, nPS ¼ 1:69). The absorp-

tion in our suspension is mostly in the water due to O-H
bonds, with � ¼ 2 m�1. The propagation length in our cell
is L� 1 cm, giving �L � 1. The thermal boundary con-
ditions at the cell walls can be set either to a constant
temperature or to be insulating. These conditions deter-
mine the ambient temperature of the fluid, which controls
the thermal behavior of the particles because ST is tem-
perature dependent. Our calculations account for the actual
dimensions of the cell including the thickness of the walls,
which affect Tðx; yÞ in Eq. (1). The model neglects con-
vective flow in the fluid, because buoyancy currents are
negligible, as the Rayleigh number is much smaller than
the critical value.

Using the self-consistency method described above, we
explore the properties of the hot-particle soliton. Figure 1
displays the results for an ambient temperature of 20 �C for
two opposing cell walls, while the other two walls are
thermally insulating. Figures 1(a)–1(d) show the FWHM
of the hot-particle soliton, maximal index change �nmax,
maximal temperature change, and maximal concentration,
as a function of the beam power. The soliton FWHM
decreases as the power is increased. Importantly, from
�nmax we see that the hot-particle solitons are stable
according to the Vakhitov-Kolokolov criterion. As ex-
pected, �nmax increases as the power is increased. Notice
the large change in the particles’ concentration at the beam
center—in excess of 1.5—manifesting a very large effect.
Solutions with other initial concentrations indicate that—
as Vf;0 is smaller—this accumulation factor increases (the

factor is 2.5 for Vf;0 ¼ 0:5%, 3.5 for Vf;0 ¼ 0:3%).

Figures 1(e)–1(g) show the various profiles for �T, accu-
mulation factor, and beam intensity, for a soliton beam
with a power of 600 mW and 30 �m FWHM. The cross
section of each plot is shown by the white line at the bottom
of 1(e)–1(g). Notice that the particles’ concentration re-
sembles the profile of the �T, which happens as long as
ST�T � 1. Such concentration profile gives rise to the
induced waveguide, whose guided mode is the beam pro-
file of Fig. 1(g).

Having found the stationary (soliton) solution, we now
simulate the propagation dynamics by solving the above

equations numerically, under various initial conditions.
Figure 2(a) shows the propagation dynamics of the
30 �m FWHM beam of Fig. 1(g), at 0.6 W power
(P30 �m ¼ 0:6 W) under the thermal boundary conditions

described above, with and without thermophoresis. Here,
L ¼ 1 cm (�L ¼ 0:02). As shown in Fig. 2(a), in the
thermophoretic medium the beam maintains a constant
width throughout propagation, whereas without thermo-
phoresis the beam FWHM increases to �70 �m.
Figure 2(b) shows the propagation dynamics of a beam
with the same wave function (the 30 �m FWHM station-
ary solution) but at different beam powers. For power
smaller than P30 �m, the beam broadens with z (the smaller

the power, the greater the broadening). For power higher
than P30 �m, the beam first undergoes overfocusing, and

then begins oscillatory evolution, as typical to self-
focusing media when the input beam is somewhat broader
than the soliton solution.
We perform experiments with the above parameters in a

1 cm long fluid cell of a 1 mm2 square cross section, placed
between two thermoelectric coolers which set the tempera-
ture at the outer surface of two opposing faces of the cell.
The fluid is the 20 nm polystyrene spheres dispersed in
water with Vf;0 ¼ 1%. We launch a 30 �m FWHM

Gaussian beam and image the output beam.
Figure 3 displays the experimental results as a function

of beam power. Our system yields a stable soliton at�1 W
power, for which the output beam has the samewidth as the
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FIG. 1 (color online). Properties of the hot-particle soliton as a
function of beam power. (a) FWHM, (b) �nmax, (c) �Tmax,
and (d) relative maximal concentration, and the profiles of
(e) �T, (f) particle concentration, and (g) the beam intensity
for a 0.6 W soliton beam.

FIG. 2 (color online). (a) Propagation dynamics for a
P30 �m ¼ 0:6 W soliton beam in the thermophoretic media and

in plain water. (b) Dynamics for the same 30 �m FWHM beam,
for powers above (red) and below (blue) P30 �m (supporting

stationary propagation of a soliton, bold black line).
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30 �m FWHM input beam. Experimentally, we observe a
noticeable self-focusing effect for beam power >0:5 W.
This effect, which continuously narrows the beam, contin-
ues for higher powers, until at 1.3 W the output beam
begins to broaden again, corresponding to an oscillatory
propagation dynamics—as expected when self-focusing is
too strong for the input beam to form a soliton. The
focusing effect occurs within a few seconds. We measure
the width of the focused output beam for several hours and
no major change is seen. In all cases, there are small
fluctuations in both the location and the shape of the
beam, but the value of the FWHM varies by only
�2:5%. The effect is fully reversible: for a high power
focused beam, once the power is lowered below 0.5 W the
FWHM of the output beam returns to its original broad
state within seconds.

Figure 3(b), showing the width of the output beam as a
function of input beam power, displays a threshold effect,
which was not predicted by the model. Clearly, for beam
power below 0.6 W, no change is observed in the output
beam width. Namely, a significant waveguiding effect ap-
pears only above this threshold value of beam power.
Comparing the experiments and the calculated results re-
veals that the figures are shifted by�0:6 W. Apart from this
shift, the figures coincide. This shift between the experi-
ments and the calculated results is also observed with other
parameters, e.g., varying the temperature (from 10 �C to
25 �C), and lowering the initial volume fraction (Vf;0 ¼
0:35, 0.5%). In all cases, the theoretical figure is shiftedwith
respect to the experiments by �0:6 W. This shift between
our model and the experimental results might be explained
in several ways. As stated above, no noticeable change in
the output beam is observed for low-power input beams for
several hours. On the other hand, when the beam power is
higher than the threshold value, the change in output beam
width is fast (several seconds). Therefore, the origin of the
threshold is not the dynamic behavior of the system, neither
is it the lack of time needed for the effect to be fully
developed. The threshold effects might originate from the
values of the Sôret coefficient used in the model. The
empiric expression for the Sôret effect states that ST is a
constant, whereas in reality it is possible that the coefficient

depends on the gradient or on the thermophoretic motion,
which could have a threshold temperature gradient for the
particles to begin their motion. Altogether, apart from the
shift in the soliton existence curve, the model explains the
results very well.
To summarize, we predicted and observed a new type of

self-trapped beams: hot-particle soliton, forming in nano-
particles suspension by virtue of thermophoresis. These
experiments manifest a new kind of interplay between light
and fluid. This ability to use light to control the local
concentration of nanoparticles in a liquid has major im-
plications for a variety of applications, ranging from using
light to locally control chemical reactions, diffusion, os-
mosis, and catalysis, to symbiotic nonlinear dynamics of
light and fluids.
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